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Abstract Polyanthranilic acid (PANA) nanofibres, nanorods,
nanospheres and microspheres were synthesized by polymeriza-
tion of anthranilic acid using ammonium peroxydisulfate (APS)
as oxidant without hard or soft templates. Polymerization of
anthranilic acid was carried out in aqueous solutions of
strong (hydrochloric) and weak (acetic) acids. The influence
of synthetic parameters such as oxidant, initiator, dopant acid
and its concentration, redox initiator, and reaction medium on
the morphology and particle size of PANA have been inves-
tigated. PANA nanofibres and nanorods were obtained via
redox polymerization of anthranilic acid initiated by FeSO4

as redox initiator. PANA nanospheres and nanofibres were
also obtained when used aromatic amines as initiators. When
polymerization carried out in the solution of weak (acetic) acid
the microsphere morphology obtained and the particle size
increase with increasing the concentration of weak acid.
PANA nanorods were obtained also by polymerization of
anthranilic in ethanol-water mixture unlike interfacial poly-
merization of anthranilic acid (in chloroform-water) that give
PANA microspheres. The morphology and particle size of
PANA was studied by scanning electron microscope (SEM)
and transmission electron microscope (TEM). The average
diameter of nanostructures obtained ≤100 nm. The optical
bandgap of microspheres and nanofibers polymeric products
were determined using UV-vis spectroscopic technique and
found to be 2.0 eV and 1.6 eV, respectively. The bandgap
decreased with decreasing the particle size. IR spectrum con-
firmed the structure of PANA nanofibres (synthesized with
FeSO4 as redox initiator) in emeraldine form. The thermal
stability of polymer obtained was determined by thermal

gravimetric analysis (TGA). The molecular weight was deter-
mined also by gel permeation chromatography (GPC).
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Introduction

During the past decades, polymernanoparticles (PNP) have
raised a great interest in the world of research due to their
various physical, chemical properties and their numerous
possible applications in electronics, photonics, conducting
materials, sensors, medicine, biotechnology, pollution con-
trol and environmental technology [1–9]. Polyaniline
(PANI) and its derivatives are considered to be one of the
most promising classes of organic conducting polymers due
to their well-behaved electrochemistry, easy protonation
reversibility, excellent redox recyclability [10], good envi-
ronmental stability [11], electrochromism [12], ease of dop-
ing [13] and ease of preparation. In addition, PANI can be
used as an electrode material [14, 15], in microelectronics
[16], as an electrochromic device [17], in radiation shielding
and in recordable optical discs. On the contrary, the com-
mercial usefulness of PANI has been limited by its intracta-
ble nature especially in the doped form which is normally
produced chemically as an insoluble powder [18].

However, its insolubility in most of the common solvents
and poor mechanical property are restricted its applications in
devices. A number of attempts have been made to improve the
processibility of PANI by polymerization of aniline derivatives
with alkyl, sulfonic, and carboxyl groups substitution [19]. The
carboxyl functionalized PANI “polyanthranilic acid” (PANA)
has overcome this problem due to its solubility in common
organic solvents. Recently, PANAwas synthesized via different
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oxidizing agents and also used for processible composites
formation [20]. Acid functionalized PANA-multi wall carbon
nanotubes (MWCNTs) nanocomposite has overcome the prob-
lem of both PANI and CNTs due to its solubility [21].
Nanostructures PANI (nanofibres and nanotubes) produced
during polymerization of aniline have received ever increasing
attention during last years [22–28]. PANI is unique among the
family of conjugated polymers since its doping level can be
readily controlled through an acid doping/base dedoping pro-
cess [29].

Although many papers have been published in the field
of PANI conducting polymer nanostructures [22–28], no
any paper has discussed the synthesis and characterization
of PANA nanostructures.

In the present study, for the first time PANA nanostruc-
tures such as nanofibres, nanorods and nanospheres have
been synthesized with average diameter ≤100 nm using
different polymerization conditions and demonstrate that it
is a very general route to create PANA nanostructures.

These nanostructures have received intensive interest because
they possess optical properties in the visible region implying the
possibility of using these materials in solar energy applications.

Experimental

Materials

Ammonium peroxydisulfate (APS) was obtained from
Merck, India. Anthranilic acid was obtained from Rolex
India Ltd, India. Diphenyl amine (RDH) and P-phenylene
diamine (FLUKA) were used without further purification.
FeSO4.7H2O was obtained from Aldrich, USA. Hydrochloric
acid and acetic acid from (Merck, India). Deionized water was
used to the preparation of the aqueous solutions. All solvents
were of analytical grade and used as received.

Synthesis of PANA nanofibres and nanorods
by polymerization initiated by redox initiator

In a typical synthesis, anthranilic acid (0.19 g, 1.4 mmol)
and FeSO4.7H2O (0.09 g, 0.3 mmol) were dissolved in
20 ml of 0.1 M HCl solution with a magnetic stirring to
form a transparent aqueous solution. Afresh solution of APS
(0.12 g, 0.5 mmol) in 20 ml of 0.1 M HCl solution was
rapidly added to the above solution containing anthranilic
acid and FeSO4. Upon the addition of APS, a series color
change is observed with naked eye: yellow and reddish
brown. The polymerization reaction was carried out for
6 h at room temperature without any disturbance. The dark
brown precipitate was filtered off, washed with 0.1 M of
HCL followed by deionized water several times, and dried
at room temperature for 24 h to give PANA nanofibers. The
same polymerization method was carried out in the dark to
give PANA nanorods.

Synthesis of PANA nanospheres and nanofibres
by polymerization initiated by aromatic amines

0.002 g (0.012 mmol) of an initiator (diphenyl amine) is
dissolved in a minimal methanol. This solution is mixed with
a solution of the anthranilic acid (0.2 g, 1.4 mmol) in 5 ml of
1MHCl to form amixture. This mixture is rapidly mixed with
a solution of APS (0.05 g, 0.22 mmol) in 5 ml of 1 M HCl.
Upon addition of oxidant, the characteristic color changes
associated with the formation of the PANA is observed within
several seconds. The reaction mixture is then left unagitated
for 1 day, after which time the crude product was filtered off,
washed with 0.1 M of HCL followed by deionized water
several times, and dried at room temperature for 24 h to give
PANA nanospheres. The same polymerization method was
carried out by using p-phenylene diamine instead of diphenyl
amine to give PANA nanofibres.
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Synthesis of PANA nanorods by polymerization
in ethanol/water mixture

Typically, the reaction was performed in a 20 ml glass vial.
0.44 g (3.2 mmol) of anthranilic acid was dissolved in 10 ml
ethanol. APS (0.18 g, 0.8 mmol) was dissolved in 10 ml
deionized water and rapidly mixed with a solution of
anthranilic acid. The polymerization reaction was carried
out for 24 h at room temperature without any disturbance.
The precipitate was filtered off, washed with 0.1 M of HCL

followed by deionized water several times and dried at room
temperature for 24 h to give PANA nanorods.

Synthesis of PANA microspheres by interfacial
polymerization

The interfacial reaction was performed in a 20 ml glass vial.
0.44 g (3.2mmol) of anthranilic acidwas dissolved in 10ml of
chloroform as organic phase. APS (0.18 g, 0.8 mmol) was
dissolved in 10 ml of 1 M HCL and rapidly mixed with a
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solution of anthranilic acid. The polymerization reaction
was carried out for 24 h at room temperature without
any disturbance. The precipitate was filtered off, washed

with 0.1 M of HCL followed by deionized water several
times and dried at room temperature for 24 h to give
PANA microspheres.

Fig. 1 SEM images of PANA.
a nanofibres at 0.1 M HCL/
FeSO4, b nanofibres at 0.5 M
HCL/FeSO4, c nanorods at
0.1 M HCL/FeSO4(in dark) and
d microspheres at 0.1 M HCL
in absence of FeSO4

Fig. 2 SEM images of a PANA
nanospheres/diphenyl amine
and b PANA nanofibres/p-
phenylene diamine in 1 M HCL
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Synthesis of PANA microspheres by polymerization
in aqueous medium of acetic acid

1.37 g (9.9 mmol) of anthranilic acid was oxidized with
2.85 g (12.5 mmol) of APS in an aqueous medium of acetic
acid at room temperature. Anthranilic acid was dissolved in
50 ml of acetic acid at different concentrations (0.5 M, 1 M).
Solution of oxidizing agent dissolved in 50 ml distilled
water was added drop-wise to the monomer solution
with constant stirring. After complete addition, the so-
lution was kept for stirring for 30 min and then incu-
bated for 24 h at room temperature. The precipitate was
washed with the same concentration of acetic acid
followed by deionized water and kept for drying at
room temperature for 24 h.

Morphological properties of polymer

The morphology and particle size of PANA samples prepared
by different methods were determined by scanning electron
microscope (SEM) (QUANTA 250 SEG, HOLANDA) and
transmission electron microscope (TEM) (JEOL [JEM- 1230
electron microscope]).

FT-IR measurements

The IR spectrum of the PANA was measured as KBr
pellets using FT/IR-BRUKER, Vector 22 (Germany)
Spectrophotometer.

UV-vis absorption measurements

The UV-vis absorption spectra for the PANA of nanofibres
and microspheres were measured using T80+ UV/vis
Spectrometer. PG instruments Ltd, Britain.

Determination of molecular weight by gel permeation
chromatography (GPC)

Molecular weights of the prepared polymers were measured
using Gel permeation Chromatography type; 1,100, Germany.
The measurements were conducted at ambient temperature
using dimethyl formamide (DMF) as the mobile phase at
flow rate of 1.0 ml/min. PANA samples were dissolved
in the same solvent as the mobile phase at concentration
of 5 mg/ml. The column was calibrated using polystyrene
standards.

Thermal gravimetric analysis

Thermal analysis experiments including thermal gravi-
metric analysis (TGA) and Differential scanning
calorimetry (DSC) for the PANA nanofibres and

Fig. 3 SEM (a) and TEM (b)
images of PANA nanorods
prepared in ethanol-water
mixture

Fig. 4 SEM images of PANA microspheres prepared via interfacial
polymerization
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microspheres were carried out using SDT Q600 V20.5
Build 15 Thermogravimetric Analyzer. The experiment
was performed in a dynamic atmosphere of nitrogen
from room temperature to 700 °C at heating rate of
10 °C/min.

Results and discussion

Synthesis of PANA nanostructures

PANA nanofibres, nanorods, nanospheres and micro-
spheres were synthesized by polymerization of
anthranilic acid using ammonium peroxydisulfate
(APS) as oxidant without hard or soft templates.
Scheme 1 illustrates the polymerization of anthranilic
acid at different polymerization conditions. Mechanism
of anthranilic acid polymerization was illustrated in
Scheme 2.

Morphological properties of polymer

The morphology and particle size of PANA samples were
investigated by scanning electron microscope (SEM) and
transmission electron microscope (TEM). Figure 1(a,b)
shows typical SEM images of the synthesized PANA pre-
pared by redox polymerization initiated by FeSO4 as redox
initiator at different conditions. Figure 1 shows PANA
nanofibres with average diameter of 43 and 21 nm in case
of 0.1 M and 0.5 M of HCL, respectively. We observed that
the particle size of nanofibres decreased with increasing the
concentration of HCL. However, PANA nanorods (with
average diameter of 57 nm) were obtained by the same
method except that the polymerization was carried out in
the dark. Figure 1(c) shows SEM image of PANA nanorods.
This observation may be due to optical properties effect of
PANA. Figure 1(d) shows PANA microspheres synthesized
in the absences of redox initiator (FeSO4) at 0.1 M HCL. It
reveals that the addition of Fe+2 in conventional polymeriza-
tion system leads to a change in bulk morphologies of PANA
from microspheres to nanofibres and nanorods [24]. When
APS is added into solution containing anthranilic acid and
FeSO4 APS can react with Fe2+ ions instantaneously to pro-
duce sulfate radical anions because Fe+2 ions have a lower
oxidation potential than anthranilic acid. The classical chem-
ical formula expressed as follows: S2O8

2− + Fe2+ → SO4
2− +

SO4
−. + Fe3+ [30]. The rate of polymerization of anthranilic

acid with the aid of Fe2+ ions has a substantial increase
compared with that without the aid of Fe2+ ions [24].
Accelerating the rate of polymerization will rapidly produce
high oligomer concentration to favor homogeneous nucle-
ation, which reduces the secondary nucleation sites on the
preexisting nanofibres and nanorods [31, 32]. PANA nano-
structures (nanospheres and nanofibres) were obtained by
polymerization of anthranilic acid in the presence of aromatic
amine as initiator. The morphology of polymer could be

Fig. 5 SEM images of PANA
microspheres a 0.5 M
CH3COOH, b 1 M CH3COOH

Fig. 6 FT-IR spectrum of PANA nanofibres at 0.1 M HCL/FeSO4
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influenced by selection the initiator. Therefore, in the
presence of diphenyl amine PANA nanospheres were
obtained with average diameter of 89 nm at 1 M
HCL. Whereas, in the presence of p-phenylene diamine
PANA nanofibres were obtained with average diameter
of 100 nm at 1 M HCL. Figure 2 shows the SEM
images of PANA nanospheres and nanofibres obtained
via polymerization of anthranilic acid initiated by aro-
matic amines. It is believed that the change in the
observed morphology in the absence and presence of
initiator Figs. 1(d) and 2(a, b), respectively can be attributed
to the rate enhancement caused by the introduction of the
initiator [33]. It is believed that in the presence of an initiators,
the formation of reactive nuclei is much faster, and as a result
they will undergo homogenous nucleation leading to nano-
structures (nanofibres and nanospheres) rather than heteroge-
neous nucleation leading to agglomerated structures. It has
also been shown that homogenous nucleation promotes the
formation of nanofibres and nanospheres [34]. PANA
nanorods were obtained also by polymerization of anthranilic
in ethanol-water mixture in absence of functional dopant acid
(HCL). Figure 3 shows SEM and TEM images of PANA
nanorods with average diameter of 25 nm. The results
obtained in this work indicated that the interfacial polymeri-
zation of anthranilic acid lead to microstructures PANA.
Figure 4 shows SEM image of PANA microspheres obtained
by interfacial polymerization based on a two phase oxidative

polymerization technique using mild acid (1 M HCL) and
chloroform as immiscible solvents. The mechanism for the
formation of microspheres may be explained based on the
micelles droplets of anthranilic acid formed in the reaction
solution at the interface of the two phases due to stirring [35].
Micelles droplets formed and stabilized at the interface due to
the hydrophilic (NH2 and COOH groups) and hydrophobic
(benzene rings) nature of the anthranilic acid monomer.
Moreover, anthranilic monomer also have tendency to self
stablize during polymerization. When the addition of an oxi-
dant, which is hydrophilic, the polymerization took place at
the interface produce small spherical nanostructures [36]. It is
well known that the oxidative polymerization of aniline and its
derivative is an exothermic process. Hence the heat released
during the oxidation of anthranilic acid will increase the local
temperature of droplets, which results in the fusion of droplets
to form the larger microspheres. PANA microspheres were
obtained by polymerization of anthranilic acid in weak
acid. Figure 5 shows SEM images of PANA micro-
spheres obtained by polymerization in acetic acid with
average diameter of 1.7 and 2.8 μm at 0.5 M and 1 M
of CH3COOH, respectively. We observed that the parti-
cle size increased with increasing the concentration of
acetic acid. Although polyaniline nanotubes was
obtained via polymerization of anthranilic acid in solu-
tion of acetic acid [26], PANA microspheres was
obtained at the same condition of polymerization, which

n
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CLCL
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N
H
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H

N N

Fig. 7 Emeraldine form for
PANA

Fig. 8 a UV-vis spectra of
PANA nanofibres at 0.1 M
HCL/FeSO4 and microspheres
at 0.1 M HCL in absence of
FeSO4, b (αhυ)2 vs. hυ plot for
bandgap estimation
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may be due to the presence of COOH group. This
means that microspheres PANA are formed by polymer-
ization of anthranilic acid in absence of FeSO4, interfa-
cial polymerization and polymerization of anthranilic
acid in acetic acid.

FT– IR spectrum of PANA

Infrared absorption spectra are long know andwell established
in characterizing the chain structure of polymers. The IR
spectrum for PANA (Fig. 6) shows strong band for the C=O
stretching at 1,684 cm−1 and band at 3,373 cm−1 assigned to
OH group. The 3,230 cm−1 band can be assigned to NH
group. The spectrum shown in Fig. 6 exhibit main bands at
1,565 cm−1 and 1,509 cm−1 corresponding to the C=C
stretching frequency of benzenoid and quinoid rings, respec-
tively. Another absorption peak at 1,241 cm−1 is mainly due to
C–N stretching of secondary aromatic amine [37]. The
1,083 cm−1 band can be assigned to a vibration mode of the
−NH+= structure, which is formed by protonation [38]. The
broad nature of this peak is owing to the high degree of
electron delocalization [39] which was expected because of
the greater degree of oxidation. The band appearing at
755 cm−1corresponds to the C–H out-of-plane bending
vibration of the benzene rings. These data reveals to
emeraldine form for PANA as shown in Fig. 7.

UV-vis absorption measurements

Figure 8(a) illustrates UV-vis spectra of PANA nanofibres
and microspheres. UV-vis spectrum of PANA nanofibres
showed three peaks as shown in Fig. 8(a). The first peak
at 280 nm corresponds to π−π* transition in benzenoid ring,
second peak at 480 nm attributed to the n−π* transition or
the excitonic transition due to partial oxidation of polymer
and can be assigned to represent the intermediate state
between lecuoemeraldine form containing benzenoid ring
and emeraldine form containing the conjugated quinoid
ring. Third peak of PANA spectrum at about 680 nm corre-
sponds to exciton-like transition quinoid ring or diimino unit
[40]. This band is blue shifted (shorter wavelength) in
PANA microspheres,

The bandgaps of PANA nanofibres and microsperes
products (synthesized by polymerization of anthranilic acid
in the presence and absence of FeSO4, respectively as redox
initiator) were evaluated from the absorbance spectra of
PANA. The optical band gaps of PANA nanofibres and
microsperes were estimated by fundamental relation given
by Tauc [41].

ahu ¼ B hu� Egð Þn ð1Þ

where α is the absorption coefficient, h υthe energy of
absorbed light, n=1/2 for direct allowed transition and B is
proportionality constant. Energy gap (Eg) was obtained by
plotting (αhυ)2 vs hυ and extrapolating the linear portion of
(αhυ)2 vs hυ to zero, as shown in Fig. 8(b). The band gaps

Table 1 GPC results of moleculer weight for PANA microspheres and
nanofibres synthesized by polymerization of anthranilic acid in the
absence and presence of FeSO4, respectively as redox initiator

Samples Average
molecular
weight(Mw)

Number
average(Mn)

Polydispersities

PANA
microspheres

16,851 11,970 1.4

PANA nanofibres 19,014 15,189 1.2

Fig. 9 a TGA, b DSC curves
of PANA nanofibres at 0.1 M
HCL/FeSO4 and microspheres
at 0.1 M HCL in absence of
FeSO4

Table 2 TGA of PANA microspheres and nanofibres

Samples 1st step (°C) 2nd step (°C) 3rd step (°C)

PANA microspheres 50–108 108–189 471

PANA nanofibres 50–85 85–184 386
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of PANA nanofibres and microspheres were estimated to be
1.6 eV and 2 eV, respectively, It may be pointed out here
that the band gap of PANA microspheres is significantly
larger than nanofibres. This is due to the change occur-
ring in each of morphology and particle size, where the
optical band gap depends on the change in particle size.
From UV-vis spectra the optical absorption of PANA
lies in visible region.

Molecular weight determination of polymer

Molecular weights of the prepared PANA were determined
by GPC and listed in Table 1. Table 1 showed that PANA
nanofibres have higher molecular weight (Mw), number
average (Mn) than that found for microspheres polymer,
unlike, microspheres PANA have higher polydispersities
than that found for nanofibers. It is believed that in the
presence of FeSO4 as redox initiator may bais formation of
nanofibres by accelerating growth of the nanofibres a long
the axis of polymer chain leading to higher molecular
weight.

Thermal gravimetric analysis

TGA is widely used to study the thermal stability and all
physical process involving the weight changes with temper-
ature. In addition, it is also employed to investigate the
thermal degradation, phase transition and crystallization of
polymers.

Thermal analysis in Fig. 9(a) showed that there are three
major stages of weight loss for both PANA nanofibres and
microspheres. In case of PANA nanofibres the first stage
with weight loss of 5 % at temperature up to 85 °C results
from the loss of water molecules from the polymer and
perhaps out of gassing of unknown small molecules. The
second stage that commences after 85 °C until 184 °C of
weight loss 8 % which associated with the loss of acid
dopant bound to the PANA chain and the evolution of
CO2. The third stage of weight loss 31 % at 386 °C repre-
sents degradation of skeletal PANA chain structure after
dopant has been removed. Above 447 °C, the results
obtained are associated with the residues only. From DSC
results Fig. 9(b) showed that there is exothermic peak at
447 °C (Tables 2 and 3).

In case of PANA microspheres, the first stage with
weight loss of 6 % at temperature up to 108 °C results
from the loss of water molecules from the polymer and
perhaps out of gassing of unknown small molecules.
The second stage that commences after 108 °C until
189 °C of weight loss 10 % which associated with the
loss of acid dopant bound to the PANA chain and the
evolution of CO2. The third stage with weight loss of
49 % at 471 °C represents degradation of skeletal
PANA chain structure after dopant has been removed.
Above 583 °C, the results obtained are associated with
the residues only. From DSC in Fig. 9(b) showed that
there is exothermic peak at 583 °C.

TGA and DSC results showed that the change in mor-
phology and particle size from microspheres to nanofibres
decreased the stability of the prepared PANA While, the
stages of degradations were shifted to lower temperatures
values.

Conclusion

Polyanthranilic acid nanofibres, nanorods and nanospheres
have been synthesized by polymerization of anthranilic acid
using ammonium peroxydisulfate (APS) as oxidant with-
out hard or soft templates at different conditions for the
first time. Moreover, PANA microspheres have been
synthesized by polymerization of anthranilic acid via
interfacial polymerization, solution polymerization in
aqueous solution of acetic acid, and polymerization in
absence of redox initiator (FeSO4). The morphology and
particle size of nanostructures (≤ 100 nm) were studied
using scanning electron microscope (SEM) and trans-
mission electron microscope (TEM). The optical prop-
erties and thermal stability of nanofibres prepared by
rapid polymerization imitated by redox initiator (FeSO4)
were compared with microspheres obtained at the same
conditions of polymerization in absence of FeSO4 as
redox initator. The results obtained from optical mea-
surements showed that λ max of PANA nanofibres
(680 nm) is longer than λ max of PANA microsperes
(580 nm). This indicates that the maximum wavelength
of PANA microspheres is shifted to shorter wavelength
(blue shift). The optical bandgap of PANA nanofibres is
narrower than the optical bandgap of PANA microsheres.
The optical bandgap decreased with decreasing the
particle size. The optical absorption of PANA lies in
visible region implies the possibility of using these
materials in solar energy applications. Thermal analysis
results showed that PANA microspheres are more stable
than nanofibres.

Table 3 DSC of PANA microspheres and nanofibres

Samples Exothermic peak (°C)

PANA microspheres 583

PANA nanofibres 447
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